Arduino徽标Arduino ABX00087 UNO R4 WiFi Development Board

ABX00087 UNO R4 WiFi 开发板

Cricket Shot Recognition using Arduino UNO R4 WiFi + ADXL345 + Edge
冲动
This document provides a complete workflow for building a cricket shot recognition system using Arduino UNO R4 WiFi with an ADXL345 accelerometer and Edge Impulse Studio. The project involves collecting accelerometer data, training a machine learning model, and deploying the trained model back to the Arduino for real-time shot classification.
Cricket shots considered in this project:
– Cover Drive
– Straight Drive
– Pull Shot

步骤 1:硬件要求

– Arduino UNO R4 WiFi
– ADXL345 Accelerometer (I2C)
– Jumper wires
– Breadboard (optional)
– USB Type-C 数据线

第 2 步:软件要求

– Arduino IDE (latest)
– Edge Impulse Studio account (free)
– Edge Impulse CLI tools (Node.js required)
– Adafruit ADXL345 library

Step 3: Wiring the ADXL345

Connect the ADXL345 sensor to the Arduino UNO R4 WiFi as follows:
VCC → 3.3V
接地 → 接地
SDA → SDA (A4)
SCL → SCL (A5)
CS → 3.3V (optional, for I2C mode)
SDO → floating or GNDArduino ABX00087 UNO R4 WiFi Development Board - overview

Step 4: Make IDE Sensor Ready

如何在Arduino IDE中安装传感器库?
打开 Arduino IDE
Open Tools → Manage Libraries… and install: Adafruit ADXL345 Unified Adafruit Unified Sensor
(If you have LSM6DSO or MPU6050 instead: install SparkFun LSM6DSO , Adafruit LSM6DS or MPU6050 accordingly.)

Step 5: Arduino Sketch for Data Collection

Upload this sketch to your Arduino UNO R4 WiFi. It streams accelerometer data in CSV format (x,y,z) at ~18 Hz for Edge Impulse.
#包括
#include <Adafruit_ADXL345_U.h>
Adafruit_ADXL345_Unified accel =
Adafruit_ADXL345_Unified(12345);
无效设置(){
串行.开始(115200);
if (!accel.begin()) {
Serial.println(“No ADXL345 detected”);
同时(1);
}
accel.setRange(ADXL345_RANGE_4_G);
}
无效循环(){
sensors_event_t e;
accel.getEvent(&e);
Serial.print (e.acceleration.x);
Serial.print(“,”);
Serial.print(e.acceleration.y);
Serial.print(“,”);
Serial.println(e.acceleration.z);delay(55); // ~18 Hz
}

Set Up Edge Impulse

Arduino ABX00087 UNO R4 WiFi Development Board - Set Up

Step 6: Connecting to Edge Impulse

  1. Close Arduino Serial Monitor.
  2. Run the command: edge-impulse-data-forwarder –frequency 18
  3. Enter axis names: accX, accY, accZ
  4. Name your device: Arduino-Cricket-Board
  5. Confirm connection in Edge Impulse Studio under ‘Devices’.

Arduino ABX00087 UNO R4 WiFi Development Board - Connecting to Edge ImpulseArduino ABX00087 UNO R4 WiFi Development Board - Connecting to Edge Impulse 1

步骤7:数据收集

In Edge Impulse Studio → Data acquisition:
– Device: Arduino-Cricket-Board
– Sensor: Accelerometer (3 axes)
– 年代ample length: 2000 ms (2 seconds)
– 频率:18 Hz
Record at least 40 samples per class:
– Cover Drive
– Straight Drive
– Pull ShotArduino ABX00087 UNO R4 WiFi Development Board - Data CollectionCollect Data Examp莱斯
封面驱动
Device: Arduino-Cricket-Board
Label: Cover Drive
Sensor: Sensor with 3 axes (accX, accY, accZ)
Sample length: 10000ms
频率: 18 Hz
Example Raw Data:
accX -0.32
accY 9.61
accZ -0.12
Straight Drive
Device: Arduino-Cricket-Board
Label: Straight Drive
Sensor: Sensor with 3 axes (accX, accY, accZ)
Sample length: 10000ms
频率: 18 Hz
Example Raw Data:
accX 1.24
accY 8.93
accZ -0.42
Pull Shot
Device: Arduino-Cricket-Board
Label: Pull Shot
Sensor: Sensor with 3 axes (accX, accY, accZ)
Sample length:10000 ms
频率: 18 Hz
Example Raw Data:
accX 2.01
accY 7.84
accZ -0.63 Arduino ABX00087 UNO R4 WiFi Development Board - Data Collection 1

Step 8: Impulse Design

Open Create impulse:
输入模块:时间序列数据(3 个轴)。
Window size: 1000 ms Window increase (stride): 200 ms Enable: Axes, Magnitude (optional), frequency 18.
Processing block: Spectral analysis (a.k.a. Spectral Features for motion). Window size: 1000 ms Window increase (stride): 200 ms Enable: Axes, Magnitude (optional), keep all defaults first.
学习模块:分类(Keras)。
点击保存冲动。 Arduino ABX00087 UNO R4 WiFi Development Board - Impulse Design

Generate features:
进入光谱分析,点击保存参数,然后生成训练集的特征。

Arduino ABX00087 UNO R4 WiFi Development Board - training set

Train a small model
Go to Classifier (Keras) and use a compact config like:
Neural network: 1–2 dense layers (e.g., 60 → 30), ReLU
Epochs: 40–60
Learning rate: 0.001–0.005
Batch size: 32
Data split: 80/20 (train/test)
Save and train the dataArduino ABX00087 UNO R4 WiFi Development Board - Save and train the data

Evaluate and Check Model testing with the holdout set.
Inspect the confusion matrix; if circle and up overlap, collect more diverse data or tweak
Spectral parameters (window size / noise floor).

Step 9: Deployment to Arduino

Go to Deployment:
Choose Arduino library (C++ library also works).
启用 EON 编译器(如果可用)以缩小模型大小。 Arduino ABX00087 UNO R4 WiFi Development Board - Deployment to ArduinoDownload the .zip, then in Arduino IDE: Sketch → Include Library → Add .ZIP Library… This adds examp类似静态缓冲区和连续缓冲区 File → 前amp文件 →
Your Project Name – Edge Impulse. Inference sketch for Arduino UNO EK R4 WiFi + ADXL345.

Step 10: Arduino Inference Sketch

#包括
#include <Adafruit_ADXL345_Unified.h>
#include <your_project_inference.h> // Replace with Edge Impulse header
Adafruit_ADXL345_Unified accel =
Adafruit_ADXL345_Unified(12345);
static bool debug_nn = false;
无效设置(){
串行.开始(115200);
while (!Serial) {}
if (!accel.begin()) {
Serial.println(“ERROR: ADXL345 not detected”);
同时(1);
}
accel.setRange(ADXL345_RANGE_4_G);
}
无效循环(){
float buffer[EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE] = {0};
for (size_t ix = 0; ix < EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE; ix +=
3) {
uint64_t next_tick = micros() + (EI_CLASSIFIER_INTERVAL_MS *
1000);
sensors_event_t e;
accel.getEvent(&e);
buffer[ix + 0] = e.acceleration.x;
buffer[ix + 1] = e.acceleration.y;
buffer[ix + 2] = e.acceleration.z;
int32_t wait = (int32_t)(next_tick – micros());
if (wait > 0) delayMicroseconds(wait);
}
signal_t signal;
int err = numpy::signal_from_buffer(buffer,
EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE, &signal);
if (err != 0) return;

ei_impulse_result_t result = {0};
EI_IMPULSE_ERROR res = run_classifier(&signal, &result,
debug_nn);
if (res != EI_IMPULSE_OK) return;

for (size_t ix = 0; ix < EI_CLASSIFIER_LABEL_COUNT; ix++) {
ei_printf(“%s: %.3f “, result.classification[ix].label,
result.classification[ix].value);
}
#if EI_CLASSIFIER_HAS_ANOMALY == 1
ei_printf(“anomaly: %.3f”, result.anomaly);
#结束
ei_printf(“\n”);
}

输出前amp乐:

Arduino ABX00087 UNO R4 WiFi Development Board - Arduino Inference Sketch尖端:
请确保 EI_CLASSIFIER_INTERVAL_MS 与数据转发器的频率保持同步(例如,100 Hz → 10 ms)。Edge Impulse 库会根据您的脉冲自动设置此常量。
如果您想要连续检测(滑动窗口),请从连续检测示例开始。ample 包含在 EI 库中,并在 ADXL345 读取中进行交换。
We will be adding video tutorials soon; till then, stay tuned – https://www.youtube.com/@RobuInlabs
And If you still have some doubts, you can check out this video by Edged Impulse: https://www.youtube.com/watch?v=FseGCn-oBA0&t=468s

Arduino徽标

文件/资源

Arduino ABX00087 UNO R4 WiFi Development Board [pdf] 用户指南
R4 WiFi, ADXL345, ABX00087 UNO R4 WiFi Development Board, ABX00087, UNO R4 WiFi Development Board, WiFi Development Board, Development Board, Board

参考

发表评论

您的电子邮件地址不会被公开。 必填字段已标记 *